Spin ice state in frustrated magnetic pyrochlore materials.

نویسندگان

  • S T Bramwell
  • M J Gingras
چکیده

A frustrated system is one whose symmetry precludes the possibility that every pairwise interaction ("bond") in the system can be satisfied at the same time. Such systems are common in all areas of physical and biological science. In the most extreme cases, they can have a disordered ground state with "macroscopic" degeneracy; that is, one that comprises a huge number of equivalent states of the same energy. Pauling's description of the low-temperature proton disorder in water ice was perhaps the first recognition of this phenomenon and remains the paradigm. In recent years, a new class of magnetic substance has been characterized, in which the disorder of the magnetic moments at low temperatures is precisely analogous to the proton disorder in water ice. These substances, known as spin ice materials, are perhaps the "cleanest" examples of such highly frustrated systems yet discovered. They offer an unparalleled opportunity for the study of frustration in magnetic systems at both an experimental and a theoretical level. This article describes the essential physics of spin ice, as it is currently understood, and identifies new avenues for future research on related materials and models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spin correlation in kagomé ice state : neutron scattering study of the dipolar spin ice Dy 2 Ti 2 O 7 under magnetic field along [ 111 ]

Spin correlation in kagomé ice state: neutron scattering study of the dipolar spin ice Dy 2 Ti 2 O 7 under magnetic field along [111] Abstract We have investigated the kagomé ice state in the frustrated pyrochlore oxide Dy 2 Ti 2 O 7 under magnetic field along a [111] axis. Spin correlations have been measured by neutron scattering and analyzed by Monte-Carlo simulation. The kagomé ice state, w...

متن کامل

Possible observation of highly itinerant quantum magnetic monopoles in the frustrated pyrochlore Yb2Ti2O7

The low-energy elementary excitations in frustrated quantum magnets have fascinated researchers for decades. In frustrated Ising magnets on a pyrochlore lattice possessing macroscopically degenerate spin-ice ground states, the excitations have been discussed in terms of classical magnetic monopoles, which do not contain quantum fluctuations. Here we report unusual behaviours of magneto-thermal ...

متن کامل

Competition Between Exchange and Anisotropy in a Pyrochlore Ferromagnet

– The Ising-like spin ice model, with a macroscopically degenerate ground state, has been shown to be approximated by several real materials. Here we investigate a model related to spin ice, in which the Ising spins are replaced by classical Heisenberg spins. These populate a cubic pyrochlore lattice and are coupled to nearest neighbours by a ferromagnetic exchange term J and to the local 〈1, 1...

متن کامل

Ground state selection under pressure in the quantum pyrochlore magnet Yb2Ti2O7

A quantum spin liquid is a state of matter characterized by quantum entanglement and the absence of any broken symmetry. In condensed matter, the frustrated rare-earth pyrochlore magnets Ho2Ti2O7 and Dy2Ti2O7, so-called spin ices, exhibit a classical spin liquid state with fractionalized thermal excitations (magnetic monopoles). Evidence for a quantum spin ice, in which the magnetic monopoles b...

متن کامل

Intermediate magnetization state and competing orders in Dy2Ti2O7 and Ho2Ti2O7

Among the frustrated magnetic materials, spin-ice stands out as a particularly interesting system. Residual entropy, freezing and glassiness, Kasteleyn transitions and fractionalization of excitations in three dimensions all stem from a simple classical Hamiltonian. But is the usual spin-ice Hamiltonian a correct description of the experimental systems? Here we address this issue by measuring m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 294 5546  شماره 

صفحات  -

تاریخ انتشار 2001